A Tiered Approach to Assessing Children's Exposure

Rosemary Zaleski, Thomas Armstrong, Leslie Hushka

ExxonMobil Biomedical Sciences, Inc., Annandale, NJ, USA

EPA/ACC Technical Workshop for the Voluntary Children's Chemical Evaluation Program, December 2001

Presentation Contents

- Background & Goal
- Unique aspects of child exposure
- Data needs & sources
- Overview of tiered approach
- Conclusions
- Discussion/ Questions?

Background

- Development supported by the American Chemistry Council
- Approach is detailed in Environmental Health Perspectives, Armstrong et al. 2000, 108 (6): 469-474; Toxicology Letters (in press 2002)
- Approach developed early in VCCEP discussions
 - chemical selection not yet done

Goal

- Efficiently identify the substances and scenarios that present the highest potential risks to children
- Help focus on chemicals:
 - to which children may be most exposed AND
 - with highest potential risk
- Consistent with VCCEP risk-based goal:
 - "to better understand the potential health risks to children associated with certain chemical exposures"

Key Considerations

- Focus is on children
 - Considers unique aspects of child exposure
- Risk-based
 - requires integration of hazard and exposure information
- Sophistication of the exposure assessment is aligned with:
 - -the overall risk characterization goals
 - -the hazard data

Unique Aspects of Child Exposure

- Exposure assessment guidance exists, but not tailored specifically to children:
 - US EPA Guidelines for Exposure Assessment (EPA 1992)
 - The Practice of Exposure Assessment: A
 State of the Art Review (Paustenbach 2000)
- Needed supplemental guidance & data:
 - application of the approaches to children
 - more specific data for children
 - relevant activity and exposure scenarios

Unique Aspects of Child Exposure: Differential Exposure Potential

Comparison of Child and Adult Intakes

Source: US EPA 1997, NRC 1993 and Gephart 1994

Media	Child (<1 yr.)	Adult	Ratio (Child / Adult)
Air	0.44 m ³ /kg-day	0.19 m ³ /kg-day	2.3
Water/fluids*	161 g/kg-day	33.5 g/kg-day	4.8
Food	140 g/kg-day	23 g/kg-day	6.1

^{*}Also, children's beverage and food *preferences* can differ greatly from those of adults (NRC 1993)

Unique Aspects of Child Exposure: Behavioral Patterns

Detailed table in Armstrong et al., 2000

Examples include....

Information Needed

In General -

- Hazard data, physical & chemical properties, & chemical uses for screening (Screening Information Data Set)
- Physiological factors
- Air, water, beverage, food intake & preferences
- Time & activity data
- Age-bracket specific data
- Chemical-specific media concentration data

Information Needed

More specific and more detailed data are needed for each subsequent and more refined step

Information Sources for Assessing Children's Exposure

- Exposure Factors:
 - EPA Leadership: exposure factors handbook, workshops, activity database
- Chemical Concentration Data:
 - Manufacturers, "grey" & scientific literature, databases (e.g. HSDB)
- Modeling Tools to Estimate Exposure:
 - ACC sponsored review

Overall Process

- Begin with less complex, default driven screening methods
- As necessary, reduce uncertainty in exposure estimates
 - proceed to more complex, data-driven chemical and scenario specific methods
- When available, replace default assumptions with actual data
- Is consistent with EPA EA guidelines

Tiered Approach

Chemical Selection

Initial Margin of Exposure (MOE)

Refined MOE

Chemical Selection

(Note: differs from VCCEP Pilot approach)

Hazard and Exposure Components:

- Moderate to high hazard
- Present at sufficient levels in child's environment

Both criteria should be met to move to next tier

Selection: Initial Hazard Information

NOAEL / LOAEL or other Hazard Metric

- No Observed Adverse Effect Level or Lowest Observed Adverse Effect Level
 - From adequate quality data
 - Child relevant endpoints when available
 - Adjusted with appropriate safety factors
- ADI or RfD may be used if available and if appropriately derived

Selection: Is the Chemical Present in the Environment of Children?

- Present at sufficient levels in:
 - Foods children eat & drink, or
 - Residential, school or outdoor air, or
 - Products children use & having physicalchemical properties allowing transfer, or
 - Soil & dust in & around the child's environment, or
 - Tissues of children

Selection: What Does "Present at Sufficient Levels" Mean?

- The phrase "sufficient levels" means at an exposure range that represents at least a fraction of a conservatively established reference quantity
- A chemical's properties and uses may limit or essentially eliminate exposure
- Detectable is not equivalent to sufficient
- Understanding of "background / natural" levels

Initial MOE

- Develop a conservative estimate of exposure
- Calculate initial Margin of Exposure (MOE):

$$MOE = \frac{NOAEL}{Exposure}$$

- If initial MOE is high, no further action necessary
- If initial MOE is low, go to next step

Acceptable MOE should consider assumptions, uncertainties in exposure and hazard data

Refined MOE

- Develop a refined exposure estimate
 - more accurate measured or modeled data
- Calculate a refined MOE
- ☐ If MOE is high, no further action required
- ☐ If MOE is low, use value to prioritize the chemical for further evaluation

As before, acceptable MOE should consider assumptions, uncertainties in estimate

Conclusions

- Sophistication of the exposure assessment needs to be aligned with:
 - -the overall risk characterization goals
 - -the hazard data
- Process needs to be flexible
 - varied exposure scenarios
 - varied exposure assessment goals
- Transparency and logic are key

Conclusions

- Meets the stated goal:
 - to efficiently identify the substances and scenarios that present the highest potential risks to children